Optical coherence tomography (OCT) captures cross-sectional data and is used for the screening, monitoring, and treatment planning of retinal diseases. Technological developments to increase the speed of acquisition often results in systems with a narrower spectral bandwidth, and hence a lower axial resolution. Traditionally, image-processing-based techniques have been utilized to reconstruct subsampled OCT data and more recently, deep-learning-based methods have been explored. In this study, we simulate reduced axial scan (A-scan) resolution by Gaussian windowing in the spectral domain and investigate the use of a learning-based approach for image feature reconstruction. In anticipation of the reduced resolution that accompanies wide-field OCT systems, we build upon super-resolution techniques to explore methods to better aid clinicians in their decision-making to improve patient outcomes, by reconstructing lost features using a pixel-to-pixel approach with an altered super-resolution generative adversarial network (SRGAN) architecture.
translated by 谷歌翻译
光学相干断层扫描(OCT)是一种非侵入性技术,可在微米分辨率中捕获视网膜的横截面区域。它已被广泛用作辅助成像参考,以检测与眼睛有关的病理学并预测疾病特征的纵向进展。视网膜层分割是至关重要的特征提取技术之一,其中视网膜层厚度的变化和由于液体的存在而引起的视网膜层变形高度相关,与多种流行性眼部疾病(如糖尿病性视网膜病)和年龄相关的黄斑疾病高度相关。变性(AMD)。但是,这些图像是从具有不同强度分布或换句话说的不同设备中获取的,属于不同的成像域。本文提出了一种分割引导的域适应方法,以将来自多个设备的图像调整为单个图像域,其中可用的最先进的预训练模型可用。它避免了即将推出的新数据集的手动标签的时间消耗以及现有网络的重新培训。网络的语义一致性和全球特征一致性将最大程度地减少许多研究人员报告的幻觉效果,这些效应对周期矛盾的生成对抗网络(Cyclegan)体系结构。
translated by 谷歌翻译
智能对话代理人和人类之间互动的承诺是,模型可以从这种反馈中学习以改进。不幸的是,野外的这种交流并不总是涉及良性或高质量的人类话语,并将包括订婚的(助手),未接触甚至恶意用户(巨魔)的混合。在这项工作中,我们研究了如何在这种环境中进行强大的学习。我们引入了基准评估,即Safetymix,可以评估在各种对抗环境中学习安全语言与有毒语言的方法,以测试其稳健性。我们建议和分析几种缓解学习算法,这些算法在示例或用户级别上识别巨魔。我们的主要发现是,基于用户的方法考虑到巨魔用户将在多个示例中表现出对抗性行为,在我们的基准测试中的各种环境中都可以使用。然后,我们在部署期间收集的对话的进一步现实生活中测试这些方法,结果相似。
translated by 谷歌翻译
我们提出了Blenderbot 3,这是一个175B参数对话模型,能够通过访问Internet和长期内存进行开放域对话,并接受了大量用户定义的任务的培训。我们同时发布了模型权重和代码,还将模型部署在公共网页上,以与有机用户进行交互。该技术报告描述了该模型的构建方式(建筑,模型和培训计划)以及其部署的细节,包括安全机制。人类评估表明,它优于现有的开放域对话代理,包括其前身(Roller等,2021; Komeili等,2022)。最后,我们使用部署收集的数据详细介绍了持续学习的计划,该数据也将公开发布。因此,该研究计划的目标是使社区能够研究通过互动学习的不断改进的负责任的代理商。
translated by 谷歌翻译
Weakly-supervised temporal action localization (WTAL) learns to detect and classify action instances with only category labels. Most methods widely adopt the off-the-shelf Classification-Based Pre-training (CBP) to generate video features for action localization. However, the different optimization objectives between classification and localization, make temporally localized results suffer from the serious incomplete issue. To tackle this issue without additional annotations, this paper considers to distill free action knowledge from Vision-Language Pre-training (VLP), since we surprisingly observe that the localization results of vanilla VLP have an over-complete issue, which is just complementary to the CBP results. To fuse such complementarity, we propose a novel distillation-collaboration framework with two branches acting as CBP and VLP respectively. The framework is optimized through a dual-branch alternate training strategy. Specifically, during the B step, we distill the confident background pseudo-labels from the CBP branch; while during the F step, the confident foreground pseudo-labels are distilled from the VLP branch. And as a result, the dual-branch complementarity is effectively fused to promote a strong alliance. Extensive experiments and ablation studies on THUMOS14 and ActivityNet1.2 reveal that our method significantly outperforms state-of-the-art methods.
translated by 谷歌翻译
Photometric stereo recovers the surface normals of an object from multiple images with varying shading cues, i.e., modeling the relationship between surface orientation and intensity at each pixel. Photometric stereo prevails in superior per-pixel resolution and fine reconstruction details. However, it is a complicated problem because of the non-linear relationship caused by non-Lambertian surface reflectance. Recently, various deep learning methods have shown a powerful ability in the context of photometric stereo against non-Lambertian surfaces. This paper provides a comprehensive review of existing deep learning-based calibrated photometric stereo methods. We first analyze these methods from different perspectives, including input processing, supervision, and network architecture. We summarize the performance of deep learning photometric stereo models on the most widely-used benchmark data set. This demonstrates the advanced performance of deep learning-based photometric stereo methods. Finally, we give suggestions and propose future research trends based on the limitations of existing models.
translated by 谷歌翻译
With the success of Vision Transformers (ViTs) in computer vision tasks, recent arts try to optimize the performance and complexity of ViTs to enable efficient deployment on mobile devices. Multiple approaches are proposed to accelerate attention mechanism, improve inefficient designs, or incorporate mobile-friendly lightweight convolutions to form hybrid architectures. However, ViT and its variants still have higher latency or considerably more parameters than lightweight CNNs, even true for the years-old MobileNet. In practice, latency and size are both crucial for efficient deployment on resource-constraint hardware. In this work, we investigate a central question, can transformer models run as fast as MobileNet and maintain a similar size? We revisit the design choices of ViTs and propose an improved supernet with low latency and high parameter efficiency. We further introduce a fine-grained joint search strategy that can find efficient architectures by optimizing latency and number of parameters simultaneously. The proposed models, EfficientFormerV2, achieve about $4\%$ higher top-1 accuracy than MobileNetV2 and MobileNetV2$\times1.4$ on ImageNet-1K with similar latency and parameters. We demonstrate that properly designed and optimized vision transformers can achieve high performance with MobileNet-level size and speed.
translated by 谷歌翻译
Recent efforts in Neural Rendering Fields (NeRF) have shown impressive results on novel view synthesis by utilizing implicit neural representation to represent 3D scenes. Due to the process of volumetric rendering, the inference speed for NeRF is extremely slow, limiting the application scenarios of utilizing NeRF on resource-constrained hardware, such as mobile devices. Many works have been conducted to reduce the latency of running NeRF models. However, most of them still require high-end GPU for acceleration or extra storage memory, which is all unavailable on mobile devices. Another emerging direction utilizes the neural light field (NeLF) for speedup, as only one forward pass is performed on a ray to predict the pixel color. Nevertheless, to reach a similar rendering quality as NeRF, the network in NeLF is designed with intensive computation, which is not mobile-friendly. In this work, we propose an efficient network that runs in real-time on mobile devices for neural rendering. We follow the setting of NeLF to train our network. Unlike existing works, we introduce a novel network architecture that runs efficiently on mobile devices with low latency and small size, i.e., saving $15\times \sim 24\times$ storage compared with MobileNeRF. Our model achieves high-resolution generation while maintaining real-time inference for both synthetic and real-world scenes on mobile devices, e.g., $18.04$ms (iPhone 13) for rendering one $1008\times756$ image of real 3D scenes. Additionally, we achieve similar image quality as NeRF and better quality than MobileNeRF (PSNR $26.15$ vs. $25.91$ on the real-world forward-facing dataset).
translated by 谷歌翻译
The task of response selection in multi-turn dialogue is to find the best option from all candidates. In order to improve the reasoning ability of the model, previous studies pay more attention to using explicit algorithms to model the dependencies between utterances, which are deterministic, limited and inflexible. In addition, few studies consider differences between the options before and after reasoning. In this paper, we propose an Implicit Relational Reasoning Graph Network to address these issues, which consists of the Utterance Relational Reasoner (URR) and the Option Dual Comparator (ODC). URR aims to implicitly extract dependencies between utterances, as well as utterances and options, and make reasoning with relational graph convolutional networks. ODC focuses on perceiving the difference between the options through dual comparison, which can eliminate the interference of the noise options. Experimental results on two multi-turn dialogue reasoning benchmark datasets MuTual and MuTual+ show that our method significantly improves the baseline of four pretrained language models and achieves state-of-the-art performance. The model surpasses human performance for the first time on the MuTual dataset.
translated by 谷歌翻译
The efficient segmentation of foreground text information from the background in degraded color document images is a hot research topic. Due to the imperfect preservation of ancient documents over a long period of time, various types of degradation, including staining, yellowing, and ink seepage, have seriously affected the results of image binarization. In this paper, a three-stage method is proposed for image enhancement and binarization of degraded color document images by using discrete wavelet transform (DWT) and generative adversarial network (GAN). In Stage-1, we use DWT and retain the LL subband images to achieve the image enhancement. In Stage-2, the original input image is split into four (Red, Green, Blue and Gray) single-channel images, each of which trains the independent adversarial networks. The trained adversarial network models are used to extract the color foreground information from the images. In Stage-3, in order to combine global and local features, the output image from Stage-2 and the original input image are used to train the independent adversarial networks for document binarization. The experimental results demonstrate that our proposed method outperforms many classical and state-of-the-art (SOTA) methods on the Document Image Binarization Contest (DIBCO) dataset. We release our implementation code at https://github.com/abcpp12383/ThreeStageBinarization.
translated by 谷歌翻译